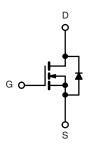
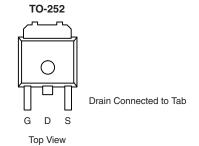


N-Channel 40 V (D-S) MOSFET


PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)			
40	0.0088 at V _{GS} = 10 V	50	16 nC			
40	0.0105 at V _{GS} = 4.5 V	50	10110			

FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET[®] Power MOSFET
- 100 % UIS Tested
- 100 % R_q Tested
- PWM Optimized
- Compliant to RoHS Directive 2002/95/EC

- LCD Display Backlight Inverters
- DC/DC Converters

N-Channel MOSFET

Ordering Information: SUD50N04-8m8P-4GE3 (Lead (Pb)-free and Halogen-free)

Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V _{DS}	40	V		
Gate-Source Voltage	V _{GS}	± 20			
-	T _C = 25 °C		50 ^a		
Continuous Drain Current (T. 150 °C)	T _C = 70 °C		44		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	- I _D	14 ^b		
	T _A = 70 °C		11.2 ^b		
Pulsed Drain Current	I _{DM}	100	Α		
Continuous Source-Drain Diode Current	T _C = 25 °C		40		
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	2.6 ^b		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	30		
Avalanche Energy	L = 0.1 IIII	E _{AS}	45	mJ	
	T _C = 25 °C		48.1	W	
Maximum Power Dissipation	T _C = 70 °C	D	30.8		
Maximum Fower Dissipation	T _A = 25 °C	- P _D	3.1 ^b		
	T _A = 70 °C		2.0 ^b		
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 to 150	°C		

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^b	Steady State	R _{thJA}	32	40	°C/W		
Maximum Junction-to-Case	Steady State	R _{thJC}	2.1	2.6	G/VV		

Notes:

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.

SUD50N04-8m8P N-Channel

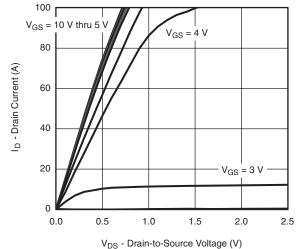
40 V (D-S) MOSFET

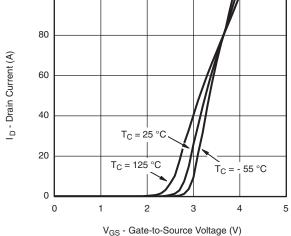
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	40			V	
$V_{\rm DS}$ Temperature Coefficient $\Delta V_{\rm DS}/T$		1 10 mA		44		mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 1.0 mA		- 5.9		mv/°C	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.5		3.0	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}$	= 40 V, V _{GS} = 0 V		1		
Zero Gate Voltage Drain Current		$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 70 ^{\circ}\text{C}$			20	μΑ	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	50			Α	
Drain-Source On-State Resistance ^a	D	V _{GS} = 10 V, I _D = 20 A		0.0069 0.0088		0	
Diani-30uice Oir-3iate nesistance"	R _{DS(on)}	V _{GS} = 4.5 V, I _D = 15 A		0.0084	0.0105	Ω	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 15 A		75		S	
Dynamic ^b							
Input Capacitance	C _{iss}			2400		pF	
Output Capacitance	C _{oss}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		260			
Reverse Transfer Capacitance	C _{rss}			100			
Total Cata Charge	Q _g	$V_{DS} = 20 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$		37	56	nC	
Total Gate Charge				16	24		
Gate-Source Charge		$V_{DS} = 20 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$		6.5			
Gate-Drain Charge	Q_{gd}			4.5			
Gate Resistance	R_{g}	f = 1 MHz	2.5	5.5	8.5	Ω	
Turn-On Delay Time	t _{d(on)}			30	45		
Rise Time	t _r	V_{DD} = 20 V, R_L = 1 Ω		15	25		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 20 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		45	70		
Fall Time	t _f			15	25	ns	
Turn-On Delay Time	t _{d(on)}			9	15	115	
Rise Time	t _r	$V_{DD} = 20 \text{ V}, R_L = 1 \Omega$		5	10]	
urn-Off Delay Time t _{d(c}		$I_D \cong 20 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$		40	60		
Fall Time	t _f			5	10		
Drain-Source Body Diode Characteris	tics						
Continuous Source-Drain Diode Current	l _S	T _C = 25 °C			40	Α	
Pulse Diode Forward Current ^a	I _{SM}				100	^	
Body Diode Voltage	V_{SD}	I _S = 10 A		0.81	1.2	V	
Body Diode Reverse Recovery Time				22	35	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	l _F = 20 A, dl/dt = 100 A/μs, T _{.l} = 25 °C		14	25	nC	
Reverse Recovery Fall Time	t _a	$\begin{bmatrix} 1 & -20 & A, & u & u & = 100 & A/\mu & 1, & 1 & = 25 & C \\ \end{bmatrix}$		11		ne	
Reverse Recovery Rise Time	t _b			11		ns	

Notes:

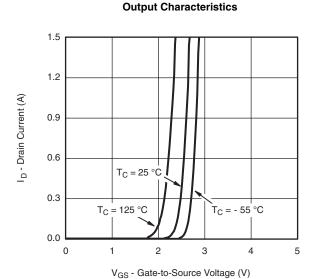
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

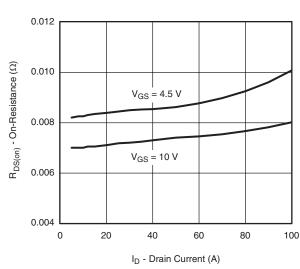

b. Guaranteed by design, not subject to production testing.

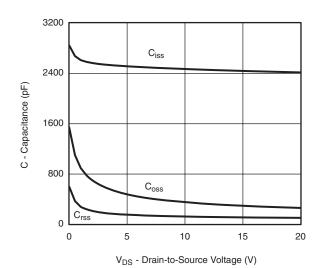


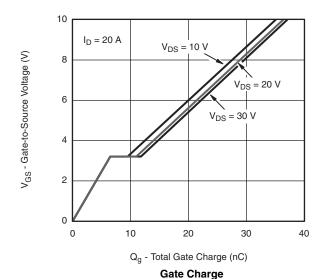
N-Channel 40 V (D-S) MOSFET


100

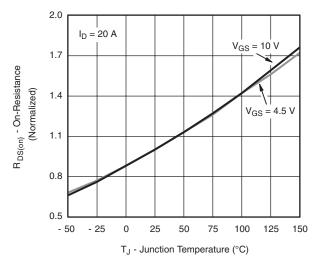
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

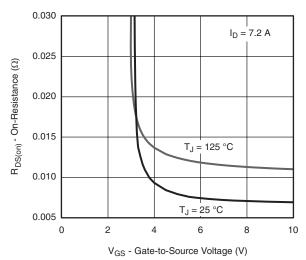



Transfer Characteristics

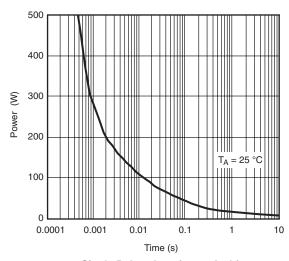

Transfer Characteristics

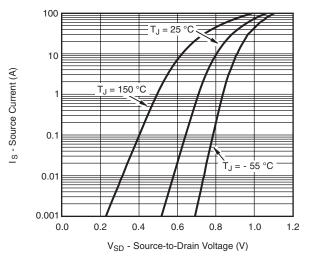
On-Resistance vs. Drain Current

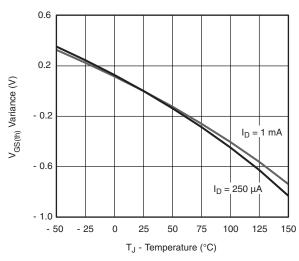

Capacitance

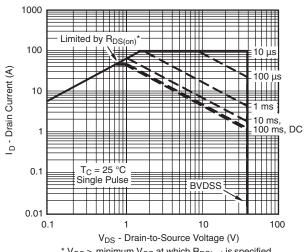


N-Channel 40 V (D-S) MOSFET


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

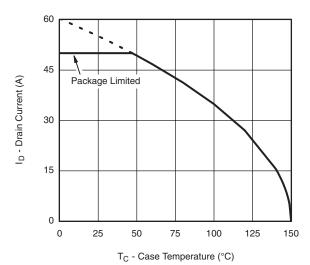

On-Resistance vs. Junction Temperature


On-Resistance vs. Gate-to-Source Voltage

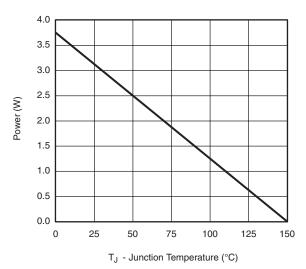

Single Pulse, Junction-to-Ambient

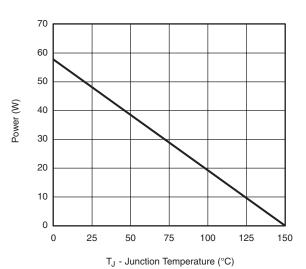
Source-Drain Diode Forward Voltage

Threshold Voltage



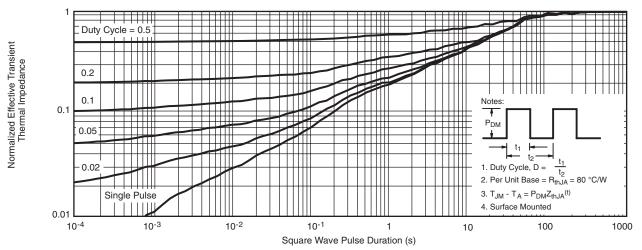
* V_{GS} > minimum V_{GS} at which R_{DS(on)} is specified


Safe Operating Area, Junction-to-Case

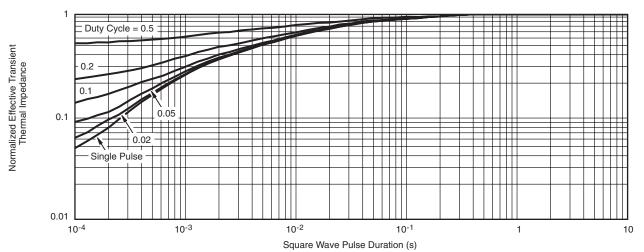

N-Channel 40 V (D-S) MOSFET

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Current Derating*, Junction-to-Case

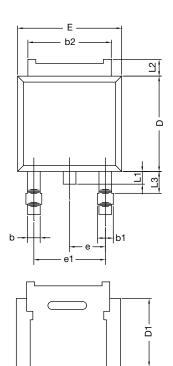

Power Derating, Junction-to-Ambient

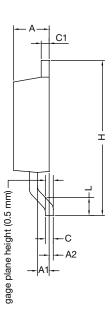
Power Derating, Junction-to-Case


^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

N-Channel 40 V (D-S) MOSFET

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


Normalized Thermal Transient Impedance, Junction-to-Ambient

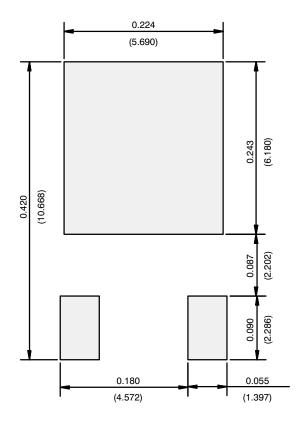


Normalized Thermal Transient Impedance, Junction-to-Case

N-Channel 40 V (D-S) MOSFET

TO-252AA CASE OUTLINE

	MILLIMETERS		INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
Α	2.21	2.38	0.087	0.094	
A1	0.89	1.14	0.035	0.045	
A2	0.030	0.127	0.001	0.005	
b	0.71	0.88	0.028	0.035	
b1	0.76	1.14	0.030	0.045	
b2	5.23	5.44	0.206	0.214	
С	0.46	0.58	0.018	0.023	
C1	0.46	0.58	0.018	0.023	
D	5.97	6.22	0.235	0.245	
D1	4.10	4.45	0.161	0.175	
Е	6.48	6.73	0.255	0.265	
E1	4.49	5.50	0.177	0.217	
е	2.28 BSC		0.090 BSC		
e1	4.57 BSC		0.180 BSC		
Н	9.65	10.41	0.380	0.410	
L	1.40	1.78	0.055	0.070	
L1	0.64	1.02	0.025	0.040	
L2	0.89	1.27	0.035	0.050	
L3	1.15	1.52	0.040	0.060	
ECN: T11-0110-Rev. L, 18-Apr-11 DWG: 5347					


Note

• Dimension L3 is for reference only.

SUD50N04-8m8P N-Channel

40 V (D-S) MOSFET

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

SUD50N04-8m8P N-Channel 40 V (D-S) MOSFET

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

freestyle Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on it s or their behalf (collectively, "freestyle"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

freestyle makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vi shay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain type s of applications are based on freestyle's knowledge of typical requirements that are often placed on freestyle products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specification s may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify freestyle's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, freestyle products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the freestyle product could result in personal injury or death. Customers using or selling freestyle products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold freestyle and its distributors harmless from and against an y and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vis hay

Material Category Policy

freestyle Intertechnology, Inc. hereby certi fies that all its products that are id entified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some freestyle documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002 /95/EC conform to Directive 2011/65/EU.